Nous suivre Industrie Techno

Parfum de scandale

Industrie et  Technologies

Sujets relatifs :

,
Solution de l'énigme du n°898 de mars 2008


Pas facile.

Pour chacun des protagonistes, la probabilité de dire vrai est de 2/3.

Nous partons de : « Keller dit que Munster nie que Dimitri ait dit que Parfumo est un menteur »

Avant la révélation de Keller, il existait 16 cas possibles de combinaisons mensonge-vérité à quatre, avec certaines probabilité a priori. Par exemple, le cas « Keller dit vrai et Munster ment et Dimitri dit vrai et Parfumo est innocent » avait la probabilité a priori de (2/3)(1/3)(2/3)(2/3) = 8/81

Etant donné le témoignage de Keller, nous pouvons envisager ces 16 cas possibles selon trois configurations mutuellement exclusives.

Première configuration : Keller est une menteuse, ce qui correspond à une probabilité de 1/3.
Alors son témoignage ne nous apprend rien de plus que ce que nous savions a priori, ni sur Parfumo, ni sur les deux autres personnes citées. L'ensemble des 4 cas ou Keller est une menteuse et Parfumo innocent, correspond donc à une probabilité a priori de (1/3)(2/3) = 2/9

Deuxième configuration : Keller et Munster disent tous deux la vérité, ce qui correspond à une probabilité 4/9. Alors, le témoignage de Munster ne nous apprend rien, comme ci-dessus celui de Keller. L'ensemble des 2 cas, où Keller est sincère et Munster sincère et Parfumo innocent, correspond donc à une probabilité a priori de (2/3)(2/3)(2/3) = 8/27

Troisième configuration : Keller dit vrai et Munster ment. On sait alors que « Dimitri a dit que Parfumo ment », ce que nous allons détailler maintenant :

  • - si Dimitri dit vrai, Parfumo est forcément coupable. Ce cas (« Keller sincère et Munster ment et Dimitri dit vrai et Parfumo ment ») correspond à une probabilité a priori de (2/3)(1/3)(2/3)(1/3) = 4/81 ;
  • - si Dimitri ment, Parfumo est forcément innocent. Ce cas (« Keller sincère et Munster ment et Dimitri ment et Parfumo innocent ») correspond à une probabilité a priori de (2/3)(1/3)(1/3)(2/3) = 4/81.

L'ensemble des cas possibles, après le témoignage de Keller, n'est donc plus le même qu'avant. En particulier, le cas auquel nous avions attribué initialement une probabilité 8/81 est désormais impossible (« Keller dit vrai et Munster ment et Dimitri dit vrai et Parfumo est innocent »).

Il faut donc réviser l'ensemble de nos probabilités selon l'esprit de la règle de Bayes :

La probabilité que Parfumo soit innocent sachant le témoignage de Keller =
(2/9 + 8/27 + 4/81) / (1/3 + 4/9 + 4/81 + 4/81) = 46/71 < 2/3

Le témoignage de Keller, malgré la difficulté de son interprétation, aboutit donc à diminuer la vraisemblance de l'innocence de Parfumo.

Paul Wagner

Bienvenue !

Vous êtes désormais inscrits. Vous recevrez prochainement notre newsletter hebdomadaire Industrie & Technologies

Nous vous recommandons

Dossier composites : comment ils vont surpasser les métaux

Dossiers

Dossier composites : comment ils vont surpasser les métaux

Les composites ne cessent d'innover pour rester compétitifs face aux autres matériaux. L'innovation porte sur les matériaux eux-mêmes, mais aussi sur[…]

Les colloques à venir - Au 12 juin 2009

Agenda

Les colloques à venir - Au 12 juin 2009

Les Nanotechnologies, vous connaissez ?

Les Nanotechnologies, vous connaissez ?

IT 911 mai 2009

IT 911 mai 2009

Plus d'articles